Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562874

RESUMO

Survival for metastatic breast cancer is low and thus, continued efforts to treat and prevent metastatic progression are critical. Estrogen is shown to promote aggressive phenotypes in multiple cancer models irrespective of estrogen receptor (ER) status. Similarly, UDP-Glucose 6-dehydrogenase (UGDH) a ubiquitously expressed enzyme involved in extracellular matrix precursors, as well as hormone processing increases migratory and invasive properties in cancer models. While the role of UGDH in cellular migration is defined, how it intersects with and impacts hormone signaling pathways associated with tumor progression in metastatic breast cancer has not been explored. Here we demonstrate that UGDH knockdown blunts estrogen-induced tumorigenic phenotypes (migration and colony formation) in ER+ and ER- breast cancer in vitro. Knockdown of UGDH also inhibits extravasation of ER- breast cancer ex vivo, primary tumor growth and animal survival in vivo in both ER+ and ER- breast cancer. We also use single cell RNA-sequencing to demonstrate that our findings translate to a human breast cancer clinical specimen. Our findings support the role of estrogen and UGDH in breast cancer progression provide a foundation for future studies to evaluate the role of UGDH in therapeutic resistance to improve outcomes and survival for breast cancer patients.

2.
Cell Rep ; 43(2): 113808, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38367236

RESUMO

Autophagy is an essential degradation and recycling process that maintains cellular homeostasis during stress or nutrient deprivation. However, certain types of tumors such as pancreatic cancers can circumvent autophagy inhibition to sustain growth. The mechanism that autophagy-deficient pancreatic ductal adenocarcinoma (PDAC) uses to grow under nutrient deprivation is poorly understood. Our data show that nutrient deprivation in PDAC results in UDP-glucose dehydrogenase (UGDH) degradation, which is dependent on autophagic cargo receptor sequestosome 1 (p62). Moreover, we demonstrate that accumulated UGDH is indispensable for autophagy-deficient PDAC cells proliferation by promoting hyaluronic acid (HA) synthesis upon energy deprivation. Using an orthotopic mouse model of PDAC, we find that inhibition of HA synthesis by targeting UGDH in PDAC reduces tumor weight. Thus, the combined inhibition of HA and autophagy might be an attractive strategy for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Ácido Hialurônico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Autofagia , Glucose Desidrogenase , Difosfato de Uridina
3.
Appl Microbiol Biotechnol ; 108(1): 62, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183486

RESUMO

In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.


Assuntos
Nanopartículas Metálicas , Oxirredutases , Ouro , Glucose 1-Desidrogenase , Bactérias
4.
Biosensors (Basel) ; 13(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38131780

RESUMO

In this study, PQQ-dependent glucose dehydrogenase (PQQ-GDH) was immobilized onto reduced graphene oxide (rGO) modified with organic dyes from three different classes (acridine, arylmethane, and diazo); namely, neutral red (NR), malachite green (MG), and congo red (CR) formed three types of biosensors. All three rGO/organic dye composites were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The impact of three rGO/organic dye modifications employed in bioelectrocatalytic systems on changes in enzyme activity and substrate selectivity was investigated. The highest sensitivity of 39 µA/cm2 was obtained for 1 mM of glucose when a rGO_MG/PQQ-GDH biosensor was used. A significant improvement in the electrochemical response of biosensors was attributed to the higher amount of pyrrolic nitrogen groups on the surface of the rGO/organic dye composites. Modifications of rGO by NR and MG not only improved the surfaces for efficient direct electron transfer (DET) but also influenced the enzyme selectivity through proper binding and orientation of the enzyme. The accuracy of the biosensor's action was confirmed by the spectrophotometric analysis. Perspectives for using the proposed bioelectrocatalytic systems operating on DET principles for total or single monosaccharide and/or disaccharide determination/bioconversion systems or for diagnoses have been presented through examples of bioconversion of D-glucose, D-xylose, and maltose.


Assuntos
Grafite , alfa-Amilases , Enzimas Imobilizadas/química , Glucose/química , Grafite/química , Glucose 1-Desidrogenase , Corantes
5.
J Diabetes Sci Technol ; : 19322968231201862, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37786261

RESUMO

New European medical device regulations require the performance of postmarketing surveillance evaluations for blood glucose meters (BGMs). We conducted an ISO15197:2015-conform system performance evaluation with the approved glucose dehydrogenase (GDH)-based Wellion NEWTON BGM. One hundred subjects were enrolled into the study (44 female, 56 male, 43 healthy subjects, 23 type 1 diabetes, 34 type 2 diabetes, age: 53.7 ± 15.8 years). In addition, manipulated heparinized whole blood was used for a laboratory interference test with ten selected substances (interference definition: substance-induced bias > 10%). The mean absolute relative difference (MARD) was 4.7%, and 100% of the values were in zones A (99.7%) and B (0.3%), respectively, of the consensus error grid. Interference was observed with xylose only, which is a known interfering substance for GDH-based BGMs.

6.
Oncotarget ; 14: 843-857, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37769033

RESUMO

UDP-glucose-6-dehydrogenase (UGDH) is a cytosolic, hexameric enzyme that converts UDP-glucose to UDP-glucuronic acid (UDP-GlcUA), a key reaction in hormone and xenobiotic metabolism and in the production of extracellular matrix precursors. In this review, we classify UGDH as a molecular indicator of tumor progression in multiple cancer types, describe its involvement in key canonical cancer signaling pathways, and identify methods to inhibit UGDH, its substrates, and its downstream products. As such, we position UGDH as an enzyme to be exploited as a potential prognostication marker in oncology and a therapeutic target in cancer biology.


Assuntos
Neoplasias , Uridina Difosfato Glucose Desidrogenase , Humanos , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/química , Uridina Difosfato Glucose , Neoplasias/genética , Oncologia , Glucose , Biologia , Glucose Desidrogenase
7.
Enzyme Microb Technol ; 170: 110305, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595400

RESUMO

One of the key intermediates, 5-hydroxyvaleric acid (5-HV), is used in the synthesis of polyhydroxyalkanoate monomer, δ-valerolactone, 1,5-pentanediol (1,5-PDO), and many other substances. Due to global environmental problems, eco-friendly bio-based synthesis of various platform chemicals and key intermediates are socially required, but few previous studies on 5-HV biosynthesis have been conducted. To establish a sustainable bioprocess for 5-HV production, we introduced gabT encoding 4-aminobutyrate aminotransferase and yqhD encoding alcohol dehydrogenase to produce 5-HV from 5-aminovaleric acid (5-AVA), through glutarate semialdehyde in Escherichia coli whole-cell reaction. As, high reducing power is required to produce high concentrations of 5-HV, we newly introduced glucose dehydrogenase (GDH) for NADPH regeneration system from Bacillus subtilis 168. By applying GDH with D-glucose and optimizing the parameters, 5-HV conversion rate from 5-AVA increased from 47% (w/o GDH) to 82% when using 200 mM (23.4 g/L) of 5-AVA. Also, it reached 56% conversion in 2 h, showing 56 mM/h (6.547 g/L/h) productivity from 200 mM 5-AVA, finally reaching 350 mM (41 g/L) and 14.6 mM/h (1.708 g/L/h) productivity at 24 h when 1 M (117.15 g/L) 5-AVA was used. When the whole-cell system with GDH was expanded to produce 1,5-PDO, its production was also increased 5-fold. Considering that 5-HV and 1,5-PDO production depends heavily on the reducing power of the cells, we successfully achieved a significant increase in 5-HV and 1,5-PDO production using GDH.


Assuntos
Escherichia coli , Microbiologia Industrial , Valeratos , Valeratos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Transaminases/genética , Álcool Desidrogenase/genética , NADP/metabolismo , Biotransformação
8.
Bioprocess Biosyst Eng ; 46(9): 1365-1373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452834

RESUMO

Chiral compounds are important drug intermediates that play a critical role in human life. Herein, we report a facile method to prepare multi-enzyme nano-devices with high catalytic activity and stability. The self-assemble molecular binders SpyCatcher and SpyTag were fused with leucine dehydrogenase and glucose dehydrogenase to produce sc-LeuDH (SpyCatcher-fused leucine dehydrogenase) and GDH-st (SpyTag-fused glucose dehydrogenase), respectively. After assembling, the cross-linked enzymes LeuDH-GDH were formed. The crosslinking enzyme has good pH stability and temperature stability. The coenzyme cycle constant of LeuDH-GDH was always higher than that of free double enzymes. The yield of L-tert-leucine synthesis by LeuDH-GDH was 0.47 times higher than that by free LeuDH and GDH. To further improve the enzyme performance, the cross-linked LeuDH-GDH was immobilized on zeolite imidazolate framework-8 (ZIF-8) via bionic mineralization, forming LeuDH-GDH @ZIF-8. The created co-immobilized enzymes showed even better pH stability and temperature stability than the cross-linked enzymes, and LeuDH-GDH@ZIF-8 retains 70% relative conversion rate in the first four reuses. In addition, the yield of LeuDH-GDH@ZIF-8 was 0.62 times higher than that of LeuDH-GDH, and 1.38 times higher than that of free double enzyme system. This work provides a novel method for developing multi-enzyme nano-device, and the ease of operation of this method is appealing for the construction of other multi-enzymes @MOF systems for the applications in the kinds of complex environment.


Assuntos
Estruturas Metalorgânicas , Humanos , Leucina Desidrogenase/química , Leucina/química , Glucose Desidrogenase
9.
Bioelectrochemistry ; 153: 108480, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37269684

RESUMO

We investigated the bioelectrochemical properties of an FAD-dependent glucose dehydrogenase from Trichoderma virens (TvGDH) and its electrochemical behaviour when immobilized on a graphite electrode. TvGDH was recently shown to have an unusual substrate spectrum and to prefer maltose over glucose as substrate, and hence could be of interest as recognition element in a maltose sensor. In this study, we determined the redox potential of TvGDH, which is -0.268 ± 0.007 V vs. SHE, and advantageously low to be used with many redox mediators or redox polymers. The enzyme was entrapped in, and wired by an osmium redox polymer (poly(1-vinylimidazole-co-allylamine)-{[Os(2,2'-bipyridine)2Cl]Cl}) with formal redox potential of +0.275 V vs. Ag|AgCl via poly(ethylene glycol) diglycidyl ether crosslinking onto a graphite electrode. When the TvGDH-based biosensor was tested with maltose it showed a sensitivity of 1.7 µA mM-1cm-2, a linear range of 0.5-15 mM, and a detection limit of 0.45 mM. Furthermore, it gave the lowest apparent Michaelis-Menten constant (KM app) of 19.2 ± 1.5 mM towards maltose when compared to other sugars. The biosensor is also able to detect other saccharides including glucose, maltotriose and galactose, these however also interfere with maltose sensing.


Assuntos
Técnicas Biossensoriais , Grafite , Hypocrea , Glucose 1-Desidrogenase/química , Maltose , Glucose , Eletrodos , Oxirredução , Polímeros/química , Enzimas Imobilizadas
10.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373294

RESUMO

Global warming is posing a threat to animals. As a large group of widely distributed poikilothermal animals, insects are liable to heat stress. How insects deal with heat stress is worth highlighting. Acclimation may improve the heat tolerance of insects, but the underlying mechanism remains vague. In this study, the high temperature of 39 °C was used to select the third instar larvae of the rice leaf folder Cnaphalocrocis medinalis, an important insect pest of rice, for successive generations to establish the heat-acclimated strain (HA39). The molecular mechanism of heat acclimation was explored using this strain. The HA39 larvae showed stronger tolerance to 43 °C than the unacclimated strain (HA27) persistently reared at 27 °C. The HA39 larvae upregulated a glucose dehydrogenase gene, CmGMC10, to decrease the reactive oxygen species (ROS) level and increase the survival rate under heat stress. The HA39 larvae maintained a higher activity of antioxidases than the HA27 when confronted with an exogenous oxidant. Heat acclimation decreased the H2O2 level in larvae under heat stress which was associated with the upregulation of CmGMC10. The rice leaf folder larvae may acclimate to global warming via upregulating CmGMC10 to increase the activity of antioxidases and alleviate the oxidative damage of heat stress.


Assuntos
Aquecimento Global , Mariposas , Animais , Glucose Desidrogenase , Peróxido de Hidrogênio , Larva/fisiologia , Mariposas/fisiologia , Aclimatação , Insetos
11.
Chembiochem ; 24(15): e202300066, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132452

RESUMO

The utilization of unnatural nicotinamide cofactors for reactions catalyzed by oxidoreductases has gained increasing interest. Totally synthetic nicotinamide cofactor biomimetics (NCBs) are cost-effective and convenient to synthesize. Thus, it has become increasingly important to develop enzymes that accept NCBs. Here, we have engineered SsGDH to favor a newly synthesized unnatural cofactor 3-carbamoyl-1-(4-carboxybenzyl) pyridin-1-ium (BANA+ ). Using in situ ligand minimization tool, sites 44 and 114 were identified as hotspots for mutagenesis. All the double mutants demonstrated 2.7-7.7-fold improvements in catalytic activity, and the best double mutant E44D/E114 L exhibited 10.6-fold increased catalytic efficiency toward BANA+ . These results provide valuable information for the rational engineering of oxidoreductases with versatile NCBs-dependency, as well as the design of novel biomimetic cofactors.


Assuntos
Biomimética , Glucose 1-Desidrogenase , Glucose 1-Desidrogenase/genética , Oxirredutases/genética , Niacinamida , Catálise
12.
Biosens Bioelectron ; 230: 115272, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023550

RESUMO

It is essential to construct a biofuel cell-based sensor and develop an effective strategy to detect glucose without any potentiostat circuitry in order to create a simple and miniaturized device. In this report, an enzymatic biofuel cell (EBFC) is fabricated by the facile design of an anode and cathode on a screen-printed carbon electrode (SPCE). To construct the anode, thionine and flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) are covalently immobilized via a crosslinker to make a cross-linked redox network. As a cathode, the Pt-free oxygen reduction carbon catalyst is employed alternative to the commonly used bilirubin oxidase. We proposed the importance of EBFC-based sensors through the connection of anode and cathode; they can identify a short-circuit current by means of applied zero external voltage, thereby capable of glucose detection without under the operation of the potentiostat. The result shows that the EBFC-based sensor could be able to detect based on a short-circuit current with a wide range of glucose concentrations from 0.28 to 30 mM. Further, an EBFC is employed as a one-compartment model energy harvester with a maximum power density of (36 ± 3) µW cm- 2 in sample volume 5 µL. In addition, the constructed EBFC-based sensor demonstrates that the physiological range of ascorbic acid and uric acid shows no significant effect on the short-circuit current generation. Moreover, this EBFC can be used as a sensor in artificial plasma without losing its performance and thereby used as a disposable test strip in real blood sample analysis.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Glucose/análise , Glucose 1-Desidrogenase , Eletrodos , Glucose Oxidase
13.
Appl Biochem Biotechnol ; 195(12): 7553-7567, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37014512

RESUMO

An efficient cofactor regeneration system has been developed to provide a hydride source for the preparation of optically pure alcohols by carbonyl reductase-catalyzed asymmetric reduction. This system employed a novel glucose dehydrogenase (BcGDH90) from Bacillus cereus HBL-AI. The gene encoding BcGDH90 was found through the genome-wide functional annotation. Homology-built model study revealed that BcGDH90 was a homo-tetramer, and each subunit was composed of ßD-αE-αF-αG-ßG motif, which was responsible for substrate binding and tetramer formation. The gene of BcGDH90 was cloned and expressed in Escherichia coli. The recombinant BcGDH90 exhibited maximum activity of 45.3 U/mg at pH 9.0 and 40 °C. BcGDH90 showed high stability in a wide pH range of 4.0-10.0 and was stable after the incubation at 55 °C for 5 h. BcGDH90 was not a metal ion-dependent enzyme, but Zn2+ could seriously inhibit its activity. BcGDH90 displayed excellent tolerance to 90% of acetone, methanol, ethanol, n-propanol, and isopropanol. Furthermore, BcGDH90 was applied to regenerate NADPH for the asymmetric biosynthesis of (S)-(+)-1-phenyl-1,2-ethanediol ((S)-PED) from hydroxyacetophenone (2-HAP) with high concentration, which increased the final efficiency by 59.4%. These results suggest that BcGDH90 is potentially useful for coenzyme regeneration in the biological reduction.


Assuntos
Oxirredutases do Álcool , Glucose 1-Desidrogenase , Glucose 1-Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Álcoois/metabolismo , Escherichia coli/metabolismo , Solventes/metabolismo , Etilenoglicol/metabolismo
14.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047124

RESUMO

A glucose biosensor was layer-by-layer assembled on a modified glassy carbon electrode (GCE) from a nanocomposite of NAD(P)+-dependent glucose dehydrogenase, aminated polyethylene glycol (mPEG), carboxylic acid-functionalized multi-wall carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymers. The electrochemical electrode was denoted as NF/IL/GDH/mPEG-fMWCNTs/GCE. The composite polymer membranes were characterized by cyclic voltammetry, ultraviolet-visible spectrophotometry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. The cyclic voltammogram of the modified electrode had a pair of well-defined quasi-reversible redox peaks with a formal potential of -61 mV (vs. Ag/AgCl) at a scan rate of 0.05 V s-1. The heterogeneous electron transfer constant (ks) of GDH on the composite functional polymer-modified GCE was 6.5 s-1. The biosensor could sensitively recognize and detect glucose linearly from 0.8 to 100 µM with a detection limit down to 0.46 µM (S/N = 3) and a sensitivity of 29.1 nA µM-1. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 0.21 mM. The constructed electrochemical sensor was compared with the high-performance liquid chromatography method for the determination of glucose in commercially available glucose injections. The results demonstrated that the sensor was highly accurate and could be used for the rapid and quantitative determination of glucose concentration.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Glucose/química , Polímeros , Nanotubos de Carbono/química , Glucose 1-Desidrogenase , Eletroquímica/métodos , Eletrodos , Técnicas Biossensoriais/métodos
15.
J Biosci Bioeng ; 135(6): 433-439, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002017

RESUMO

Allitol and gluconic acid (GA) are important industrial compounds that are preferably produced via bio-production processes. In this research, d-psicose-3-epimerase (DPEase), glucose dehydrogenase (GDH), and ribitol dehydrogenase (RDH) were heterologously expressed in Escherichia coli, realizing the co-production of allitol and GA. Compared to the loss of carbon flux from formate dehydrogenase (FDH), glucose dehydrogenase can produce GA while generating NAD(H). The recombinant strain Ec/pAd-pRrg boosted NADH production to 2.4 µmol/gDCW, 118% higher than with the control strain. Under the optimized conditions, 12.0 g/L allitol and 14.8 g/L GA were produced from 25 g/L d-fructose and 20 g/L d-glucose; i.e., 66.7% and 66.3% higher yields compared to the case of fermentation without optimization, respectively. Furthermore, 42.7 g/L allitol and 56.2 g/L GA can be obtained from pretreated molasses (containing 139.2 g/L d-fructose and 149.1 g/L d-glucose). This work provides a practicable strategy for industrial and efficient co-production of allitol and GA from a cheap raw substrate.


Assuntos
Escherichia coli , Frutose , Escherichia coli/genética , Escherichia coli/metabolismo , Biotransformação , Frutose/metabolismo , Glucose Desidrogenase/metabolismo , Glucose/metabolismo
16.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768169

RESUMO

The electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to create a DET-type oxidoreductase complex based on the SpyCatcher/SpyTag technique by preparing SpyCatcher-fused heme c and SpyTag-fused non-DET-type oxidoreductases, and by the in vitro formation of DET-type oxidoreductase complexes. A heme c containing an electron transfer protein derived from Rhizobium radiobacter (CYTc) was selected to prepare SpyCatcher-fused heme c. Three non-DET-type oxidoreductases were selected as candidates for the SpyTag-fused enzyme: fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH), an engineered FAD-dependent d-amino acid oxidase (DAAOx), and an engineered FMN-dependent l-lactate oxidase (LOx). CYTc-SpyCatcher (CYTc-SC) and SpyTag-Enzymes (ST-GDH, ST-DAAOx, ST-LOx) were prepared as soluble molecules while maintaining their redox properties and catalytic activities, respectively. CYTc-SC/ST-Enzyme complexes were formed by mixing CYTc-SpyCatcher and SpyTag-Enzymes, and the complexes retained their original enzymatic activity. Remarkably, the heme domain served as an electron acceptor from complexed enzymes by intramolecular electron transfer; consequently, all constructed CYTc-SC/ST-Enzyme complexes showed DET ability to the electrode, demonstrating the versatility of this method.


Assuntos
Elétrons , Flavina-Adenina Dinucleotídeo , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose 1-Desidrogenase/metabolismo , Proteínas/metabolismo , Oxirredução
17.
Microbiol Spectr ; 11(1): e0273622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602384

RESUMO

Polymyxins are the last-line antibiotics used to treat Gram-negative pathogens. Thus, the discovery and biochemical characterization of the resistance genes against polymyxins are urgently needed for diagnosis, treatment, and novel antibiotic design. Herein, we report novel polymyxin-resistance genes identified from sediment and seawater microbiome. Despite their low sequence identity against the known pmrE and pmrF, they show in vitro activities in UDP-glucose oxidation and l-Ara4N transfer to undecaprenyl phosphate, respectively, which occur as the part of lipid A modification that leads to polymyxin resistance. The expression of pmrE and pmrF also showed substantially high MICs in the presence of vanadate ions, indicating that they constitute polymyxin resistomes. IMPORTANCE Polymyxins are one of the last-resort antibiotics. Polymyxin resistance is a severe threat to combat multidrug-resistant pathogens. Thus, up-to-date identification and understanding of the related genes are crucial. Herein, we performed structure-guided sequence and activity analysis of five putative polymyxin-resistant metagenomes. Despite relatively low sequence identity to the previously reported polymyxin-resistance genes, at least four out of five discovered genes show reactivity essential for lipid A modification and polymyxin resistance, constituting antibiotic resistomes.


Assuntos
Microbiota , Polimixinas , Polimixinas/farmacologia , Polimixinas/metabolismo , Lipídeo A/química , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Microbiota/genética , Farmacorresistência Bacteriana/genética
18.
BMC Genomics ; 24(1): 18, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639618

RESUMO

BACKGROUND: The importance of uridine 5'-diphosphate glucose (UDP-G) synthesis and degradation on carbon (C) partitioning has been indicated in several studies of plant systems, whereby the kinetic properties and abundance of involved enzymes had a significant effect upon the volume of C moving into the hemicellulose, cellulose and sucrose pools. In this study, the expression of 136 genes belonging to 32 gene families related to UDP-G metabolism was studied in 3 major sugarcane organs (including leaf, internode and root) at 6 different developmental stages in 2 commercial genotypes. RESULTS: Analysis of the genes associated with UDP-G metabolism in leaves indicated low expression of sucrose synthase, but relatively high expression of invertase genes, specifically cell-wall invertase 4 and neutral acid invertase 1-1 and 3 genes. Further, organs that are primarily responsible for sucrose synthesis or bioaccumulation, i.e., in source organs (mature leaves) and storage sink organs (mature internodes), had very low expression of sucrose, cellulose and hemicellulose synthesis genes, specifically sucrose synthase 1 and 2, UDP-G dehydrogenase 5 and several cellulose synthase subunit genes. Gene expression was mostly very low in both leaf and mature internode samples; however, leaves did have a comparatively heightened invertase and sucrose phosphate synthase expression. Major differences were observed in the transcription of several genes between immature sink organs (roots and immature internodes). Gene transcription favoured utilisation of UDP-G toward insoluble and respiratory pools in roots. Whereas, there was comparatively higher expression of sucrose synthetic genes, sucrose phosphate synthase 1 and 4, and comparatively lower expression of many genes associated with C flow to insoluble and respiratory pools including myo-Inositol oxygenase, UDP-G dehydrogenase 4, vacuolar invertase 1, and several cell-wall invertases in immature internodes. CONCLUSION: This study represents the first effort to quantify the expression of gene families associated with UDP-G metabolism in sugarcane. Transcriptional analysis displayed the likelihood that C partitioning in sugarcane is closely related to the transcription of genes associated with the UDP-G metabolism. The data presented may provide an accurate genetic reference for future efforts in altering UDP-G metabolism and in turn C partitioning in sugarcane.


Assuntos
Saccharum , Saccharum/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Difosfato de Uridina/metabolismo , Sacarose/metabolismo , Celulose/metabolismo , Glucose/metabolismo , Oxirredutases/metabolismo
19.
ACS Synth Biol ; 12(2): 555-564, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36719178

RESUMO

Vibrio natriegens is the fastest-growing bacteria, and its doubling time is less than 10 min. At present, the T7 expression system has been introduced into V. natriegens for heterologous protein expression, including the commercial strain Vmax1 and the variant VnDX,2 which is a backup expression chassis of Escherichia coli BL21(DE3). However, the strength of the existing T7 expression system is not optimal for every recombinant protein. The different expression strengths of T7 RNA polymerase (T7 RNAP) can be obtained by changing the promoter and ribosome binding site (RBS) sequences of T7 RNAP at different transcription and translation levels. In this work, we obtained a robust VnDX variant library with the fine-tuning T7 RNAP using the industrially used enzyme glucose dehydrogenase (GDH) as the reporter protein. Among this library, the variant VnDX-tet, whose promoter of T7 RNAP was changed from PlacUV5 to Ptet, showed that the reporter enzyme GDH activity was increased by 109% by the T7 expression system. Similarly, variants with different T7 RNAP translation levels were obtained by changing RBS sequences upstream of T7 RNAP, and the results showed that the variant VnDX-RBS12/pGDH had the highest GDH activity, which increased by 12.6%. The VnDX variant library constructed in this study with different T7 expression strengths provides a choice for expressing various recombinant proteins, greatly expanding the application of V. natriegens.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas Virais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bacteriófago T7/genética
20.
Bioelectrochemistry ; 150: 108365, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36638677

RESUMO

Two dehydrogenase enzymes (glucose, GDH, and lactate, LDH, dehydrogenases) encapsulated within alginate hydrogels were deposited on glassy carbon electrodes. The as-prepared enzyme modified alginate hydrogels were utilized as electrochemiluminescence (ECL)-based biosensors for the indirect detection of glucose and lactic acid upon reaction between NADH and tris(2,2'-bipyridyl) ruthenium (II) [Ru(bpy)3]2+. The ECL response was obtained from the redox reaction between the substrate, the cofactor NAD+ and the encapsulated enzyme. The production of NADH resulting from the enzymatic reaction led to the ECL emission upon reaction with [Ru(bpy)3]2+. The biosensors showed good stability and repeatability, with linear range between 0.56 and 4.2 µM and limit of detection of 0.84 µM for glucose, and linear range between 5 and 30 µM with a limit of detection of 2.52 µM for lactic acid. These ECL-based biosensors showed good sensitivity when tested in the presence of common interfering species. These biosensors were utilized in artificial sweat and were characterized by good reproducibility and repeatability. The results herein presented suggest that the dehydrogenases encapsulated within alginate hydrogels have potential for the development of biocompatible sensors for detection of glucose and lactic acid in physiological fluids.


Assuntos
Técnicas Biossensoriais , Rutênio , 2,2'-Dipiridil , Lactato Desidrogenases , Rutênio/química , Hidrogéis , Medições Luminescentes/métodos , Glucose , NAD , Reprodutibilidade dos Testes , L-Lactato Desidrogenase , Técnicas Biossensoriais/métodos , Ácido Láctico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...